Extreme Learning Machine with Local Connections

نویسندگان

  • Feng Li
  • Sibo Yang
  • Huanhuan Huang
  • Wei Wu
چکیده

This paper is concerned with the sparsification of the input-hidden weights of ELM (Extreme Learning Machine). For ordinary feedforward neural networks, the sparsification is usually done by introducing certain regularization technique into the learning process of the network. But this strategy can not be applied for ELM, since the input-hidden weights of ELM are supposed to be randomly chosen rather than to be learned. To this end, we propose a modified ELM, called ELM-LC (ELM with local connections), which is designed for the sparsification of the input-hidden weights as follows: The hidden nodes and the input nodes are divided respectively into several corresponding groups, and an input node group is fully connected with its corresponding hidden node group, but is not connected with any other hidden node group. As in the usual ELM, the hiddeninput weights are randomly given, and the hidden-output weights are obtained through a least square learning. In the numerical simulations on some benchmark problems, the new ELM-CL behaves better than the traditional ELM.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Outlier Detection Using Extreme Learning Machines Based on Quantum Fuzzy C-Means

One of the most important concerns of a data miner is always to have accurate and error-free data. Data that does not contain human errors and whose records are full and contain correct data. In this paper, a new learning model based on an extreme learning machine neural network is proposed for outlier detection. The function of neural networks depends on various parameters such as the structur...

متن کامل

A Hybrid Machine Learning Method for Intrusion Detection

Data security is an important area of concern for every computer system owner. An intrusion detection system is a device or software application that monitors a network or systems for malicious activity or policy violations. Already various techniques of artificial intelligence have been used for intrusion detection. The main challenge in this area is the running speed of the available implemen...

متن کامل

Application of the Extreme Learning Machine for Modeling the Bead Geometry in Gas Metal Arc Welding Process

Rapid prototyping (RP) methods are used for production easily and quickly of a scale model of a physical part or assembly. Gas metal arc welding (GMAW) is a widespread process used for rapid prototyping of metallic parts. In this process, in order to obtain a desired welding geometry, it is very important to predict the weld bead geometry based on the input process parameters, which are voltage...

متن کامل

Modeling Discharge Coefficient of Side Weir on Converging Channel Using Extreme Learning Machine

In this study, the discharge coefficient of side weirs located on converging channels was simulated for the first time using a new method of Extreme Learning Machine (ELM). To examine the accuracy of the numerical model, the Monte Carlo simulations were used and the experimental values validation was conducted by the k-fold cross validation method. Then, the input parameters were detected for s...

متن کامل

Simulation of Scour Pattern Around Cross-Vane Structures Using Outlier Robust Extreme Learning Machine

In this research, the scour hole depth at the downstream of cross-vane structures with different shapes (i.e., J, I, U, and W) was simulated utilizing a modern artificial intelligence method entitled "Outlier Robust Extreme Learning Machine (ORELM)". The observational data were divided into two groups: training (70%) and test (30%). Then, using the input parameters including the ratio of the st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1801.06975  شماره 

صفحات  -

تاریخ انتشار 2018